Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2254926

RESUMO

Plant roots, due to a high content of natural antioxidants for many years, have been used in herbal medicine. It has been documented that the extract of Baikal skullcap (Scutellaria baicalensis) has hepatoprotective, calming, antiallergic, and anti-inflammatory properties. Flavonoid compounds found in the extract, including baicalein, have strong antiradical activity, which improves overall health and increases feelings of well-being. Plant-derived bioactive compounds with antioxidant activity have for a long time been used as an alternative source of medicines to treat oxidative stress-related diseases. In this review, we summarized the latest reports on one of the most important aglycones with respect to the pharmacological activity and high content in Baikal skullcap, which is 5,6,7-trihydroxyflavone (baicalein).


Assuntos
Flavanonas , Scutellaria baicalensis , Humanos , Flavanonas/farmacologia , Extratos Vegetais/farmacologia , Flavonoides/farmacologia , Antioxidantes/farmacologia , Raízes de Plantas
2.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: covidwho-1997645

RESUMO

R2R3-MYB transcription factors participate in multiple critical biological processes, particularly as relates to the regulation of secondary metabolites. The dried root of Scutellaria baicalensis Georgi is a traditional Chinese medicine and possesses various bioactive attributes including anti-inflammation, anti-HIV, and anti-COVID-19 properties due to its flavonoids. In the current study, a total of 95 R2R3-MYB genes were identified in S. baicalensis and classified into 34 subgroups, as supported by similar exon-intron structures and conserved motifs. Among them, 93 R2R3-SbMYBs were mapped onto nine chromosomes. Collinear analysis revealed that segmental duplications were primarily responsible for driving the evolution and expansion of the R2R3-SbMYB gene family. Synteny analyses showed that the ortholog numbers of the R2R3-MYB genes between S. baicalensis and other dicotyledons had a higher proportion compared to that which is found from the monocotyledons. RNA-seq data indicated that the expression patterns of R2R3-SbMYBs in different tissues were different. Quantitative reverse transcriptase-PCR (qRT-PCR) analysis showed that 36 R2R3-SbMYBs from different subgroups exhibited specific expression profiles under various conditions, including hormone stimuli treatments (methyl jasmonate and abscisic acid) and abiotic stresses (drought and cold shock treatments). Further investigation revealed that SbMYB18/32/46/60/70/74 localized in the nucleus, and SbMYB18/32/60/70 possessed transcriptional activation activity, implying their potential roles in the regulatory mechanisms of various biological processes. This study provides a comprehensive understanding of the R2R3-SbMYBs gene family and lays the foundation for further investigation of their biological function.


Assuntos
Genes myb , Scutellaria baicalensis , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Scutellaria baicalensis/genética , Scutellaria baicalensis/metabolismo , Fatores de Transcrição/metabolismo
3.
Phytother Res ; 36(11): 4210-4229, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-1935726

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In China, the Acacia catechu (AC)-Scutellariae Radix (SR) formula has been widely used for pulmonary infection in clinical practice for several centuries. However, the potential role and mechanisms of this formula against COVID-19 remains unclear. The present study was designed to dissect the active ingredients, molecular targets, and the therapeutic mechanisms of AC-SR formula in the treatment of COVID-19 based on a systems pharmacology strategy integrated by ADME screening, target prediction, network analysis, GO and KEGG enrichment analysis, molecular docking, and molecular dynamic (MD) simulations. Finally, Quercetin, Fisetin(1-), kaempferol, Wogonin, Beta-sitosterol, Baicalein, Skullcapflavone II, Stigmasterol were primarily screened to be the potentially effective active ingredients against COVID-19. The hub-proteins were TP53, JUN, ESR1, MAPK1, Akt1, HSP90AA1, TNF, IL-6, SRC, and RELA. The potential mechanisms of AC-SR formula in the treatment of COVID-19 were the TNF signaling pathway, PI3K-Akt signaling pathway and IL-17 signaling pathway, etc. Furthermore, virtual docking revealed that baicalein, (+)-catechin and fisetin(1-) exhibited high affinity to SARS-CoV-2 3CLpro, which has validated by the FRET-based enzymatic inhibitory assays with the IC50 of 11.3, 23.8, and 44.1 µM, respectively. And also, a concentration-dependent inhibition of baicalein, quercetin and (+)-catechin against SARS-CoV-2 ACE2 was observed with the IC50 of 138.2, 141.3, and 348.4 µM, respectively. These findings suggested AC-SR formula exerted therapeutic effects involving "multi-compounds and multi-targets." It might be working through directly inhibiting the virus, improving immune function, and reducing the inflammatory in response to anti-COVID-19. Ultimately, this study would provide new perspective for discovering potential drugs and mechanisms against COVID-19.


Assuntos
Acacia , Tratamento Farmacológico da COVID-19 , Catequina , Medicamentos de Ervas Chinesas , Humanos , SARS-CoV-2 , Scutellaria baicalensis , Simulação de Acoplamento Molecular , Quercetina/farmacologia , Quercetina/uso terapêutico , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa
4.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: covidwho-1376839

RESUMO

Wogonin is one of the most active flavonoids from Scutellaria baicalensis Georgi (baikal skullcap), widely used in traditional Chinese medicine. It exhibits a broad spectrum of health-promoting and therapeutic activities. Together with baicalein, it is considered to be the one of main active ingredients of Chinese medicines for the management of COVID-19. However, therapeutic use of wogonin may be limited due to low market availability connected with its low content in baikal skullcap and lack of efficient preparative methods for obtaining this compound. Although the amount of wogonin in skullcap root often does not exceed 0.5%, this material is rich in wogonin glucuronide, which may be used as a substrate for wogonin production. In the present study, a rapid, simple, cheap and effective method of wogonin and baicalein preparation, which provides gram quantities of both flavonoids, is proposed. The obtained wogonin was used as a substrate for biotransformation. Thirty-six microorganisms were tested in screening studies. The most efficient were used in enlarged scale transformations to determine metabolism of this xenobiotic. The major phase I metabolism product was 4'-hydroxywogonin-a rare flavonoid which exhibits anticancer activity-whereas phase II metabolism products were glucosides of wogonin. The present studies complement and extend the knowledge on the effect of substitution of A- and B-ring on the regioselective glycosylation of flavonoids catalyzed by microorganisms.


Assuntos
Flavanonas/química , Flavanonas/farmacologia , Scutellaria baicalensis/química , Animais , Biotransformação , Flavanonas/isolamento & purificação , Flavanonas/farmacocinética , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
5.
Phytother Res ; 35(6): 3194-3204, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: covidwho-1081670

RESUMO

The current worldwide outbreak of the coronavirus disease 2019 (COVID-19) has been declared a public health emergency. The angiotensin-converting enzyme II (ACE2) has been reported as the primary host-cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19. In this study, we screened ACE2 ligands from Radix Scutellariae and investigated its suppressive effect on SARS-CoV-2 spiked pseudotyped virus in vitro. HEK293T cells stably expressing ACE2 receptors (ACE2 cells) were used to provide the receptor for the ACE2/cell membrane chromatography (CMC) method used for analysis. The SARS-CoV-2-spiked pseudotyped virus was used to examine the anti-viropexis effect of the screened compounds in ACE2 cells. Molecular docking and the surface plasmon resonance (SPR) assay were used to determine the binding properties. Oroxylin A exhibited an appreciable suppressive effect against the entrance of the SARS-CoV-2-spiked pseudotyped virus into ACE2 cells, which showed good binding to ACE2 as determined using SPR and CMC. Oroxylin A was shown to be a potential candidate in the treatment for COVID-19 by virtue of its blocking the entrance of SARS-CoV-2 into ACE2 cells by specifically binding to the ACE2 receptor.


Assuntos
Tratamento Farmacológico da COVID-19 , Flavonoides/farmacologia , SARS-CoV-2/efeitos dos fármacos , Scutellaria baicalensis/química , Enzima de Conversão de Angiotensina 2/metabolismo , Membrana Celular/metabolismo , Cromatografia , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos
6.
J Enzyme Inhib Med Chem ; 36(1): 497-503, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1045926

RESUMO

COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50's of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50's of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Flavanonas/farmacologia , Extratos Vegetais/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , COVID-19/enzimologia , COVID-19/virologia , Chlorocebus aethiops , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Humanos , Técnicas In Vitro , Modelos Moleculares , SARS-CoV-2/enzimologia , Scutellaria baicalensis , Células Vero
7.
Phytother Res ; 35(2): 864-876, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-800772

RESUMO

Recently, the novel life-threatening coronavirus infection (COVID-19) was reported at the end of 2019 in Wuhan, China, and spread throughout the world in little time. The effective antiviral activities of natural products have been proved in different studies. In this review, regarding the effective herbal treatments on other coronavirus infections, promising natural products for COVID-19 treatment are suggested. An extensive search in Google Scholar, Science Direct, PubMed, ISI, and Scopus was done with search words include coronavirus, COVID-19, SARS, MERS, natural product, herb, plant, and extract. The consumption of herbal medicine such as Allium sativum, Camellia sinensis, Zingiber officinale, Nigella sativa, Echinacea spp. Hypericum perforatum, and Glycyrrhiza glabra, Scutellaria baicalensis can improve the immune response. It seems that different types of terpenoids have promising effects in viral replication inhibition and could be introduced for future studies. Additionally, some alkaloid structures such as homoharringtonine, lycorine, and emetine have strong anti-coronavirus effects. Natural products can inhibit different coronavirus targets such as S protein (emodin, baicalin) and viral enzymes replication such as 3CLpro (Iguesterin), PLpro (Cryptotanshinone), helicase (Silvestrol), and RdRp (Sotetsuflavone). Based on previous studies, natural products can be introduced as preventive and therapeutic agents in the fight against coronavirus.


Assuntos
Antivirais/uso terapêutico , Produtos Biológicos/uso terapêutico , Tratamento Farmacológico da COVID-19 , Quimioprevenção/métodos , Infecções por Coronavirus/tratamento farmacológico , Fitoterapia/métodos , Alcaloides de Amaryllidaceae/uso terapêutico , Antivirais/classificação , Antivirais/farmacologia , Produtos Biológicos/farmacologia , COVID-19/epidemiologia , Coronavirus/classificação , Coronavirus/efeitos dos fármacos , Infecções por Coronavirus/epidemiologia , Humanos , Fenantridinas/uso terapêutico , Extratos Vegetais/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Scutellaria baicalensis , Terapias em Estudo/métodos , Replicação Viral/efeitos dos fármacos
8.
Curr Pharm Biotechnol ; 22(4): 444-450, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-630363

RESUMO

BACKGROUND: The aim of the present review is to provide basic knowledge regarding the treatment of Coronavirus via medicinal plants. Coronavirus (COVID-19, SARS-CoV, and MERS-CoV) as a viral pneumonia causative agent, has infected thousands of people in China and worldwide. Currently, there is no specific medicine or vaccine available that can treat or prevent this virus and this has posed a severe threat to human health; therefore, there is an urgent need to develop a novel drug or anticoronavirus vaccine. However, natural compounds to treat coronaviruses are the most effective alternative and complementary therapies due to their diverse range of biological and therapeutic properties. METHODS: We performed an open-ended, English restricted search of Scopus database, Web of Science, and Pubmed for all available literature from Jan-March, 2020, using terms related to phytochemical compounds, medicinal plants and coronavirus. RESULTS: The view on anti-coronavirus (anti-CoV) activity in the plant-derived phytochemicals and medicinal plants gives a strong base to develop a novel treatment employing these compounds for coronavirus. Various phytochemicals and medicinal plant extracts have been revised and are considered as potential anti-CoV agents for effective control of the virus and future drug development. Herein, we discuss some important plants (Scutellaria baicalensis, Psorothamnus arborescens, Glycyrrhiza radix, Glycyrrhiza uralensis, Lycoris radiate, Phyllanthus emblica, Camellia sinensis, Hyptis atrorubens Poit, Fraxinus sieboldiana, Erigeron breviscapus, Citri Reticulatae Pericarpium, Amaranthus tricolor, Phaseolus vulgaris, Rheum palmatum, Curcuma longa and Myrica cerifera) that have emerged to have broad-spectrum antiviral activity. CONCLUSION: Nigella sativa has potent anti-SARS-CoV activity and it might be a useful source for developing novel antiviral therapies for coronavirus.


Assuntos
Tratamento Farmacológico da COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Compostos Fitoquímicos/uso terapêutico , Plantas Medicinais , SARS-CoV-2/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Antivirais/isolamento & purificação , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/epidemiologia , COVID-19/imunologia , Curcuma , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Nigella sativa , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2/imunologia , Scutellaria baicalensis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA